isoenergetic with the Ru^{2+} Fermi level. This condition requires that their energy levels be about 2.5 V below the Fermi level of the hydrocarbon chain. It is difficult to imagine, however, the sort of molecular organization that would lead to orbital stabilization to this extent. Ultimately, electron transfer may prove to be more appropriately described in terms of superexchange-type coupling mechanisms, e.g., as discussed by Jortner. ${ }^{\text {sa }}$ In this regard, both the phosphatidylcholine monomers and alkyl substituent chain of the ruthenium coordination complex used in these studies possess olefinic unsaturation, the relatively low-lying unoccupied orbitals of which might engage in electronic mixing with donor and acceptor orbitals. Current research is directed
at characterizing the rate-influencing factors inherent in the ligand and membrane molecular structures.

Acknowledgment. Financial support was provided by the U. S. Public Health Service (Grant GM-20943) and U.S. Department of Energy (Contract DE-AC06-83ER13111). Light-scattering measurements were made in the laboratory of Professor Michael Grätzel (Lausanne, Switzerland), to whom we are indebted for his generosity and hospitality.

Registry No. $\left(\mathrm{NH}_{3}\right)_{5} \mathrm{RuL}{ }^{3+}$ ($\mathrm{L}=4$-(11'-dodecenyl)pyridine), 92669-57-3; $\mathrm{Cr}, 7440-47-3$; $\mathrm{V}, 7440-62-2$; ascorbic acid, $50-81-7$; dipalmitoyl-L- α-phosphatidylcholine, 63-89-8.

Infrared Spectra of $\mathrm{MeMn}(\mathrm{CO})_{5}$ and $\mathrm{MeRe}(\mathrm{CO})_{5}$ Species: Methyl Group Geometry and the Effects of Internal Rotation

C. Long, ${ }^{1 \mathbf{1 a}}$ A. R. Morrisson, ${ }^{\mathbf{1 b}}$ D. C. McKean, ${ }^{*}$ and G. P. McQuillan
Contribution from the Department of Chemistry, University of Aberdeen, Aberdeen AB9 2UE, Scotland. Received June 14, 1984

Abstract

Infrared spectra in the CH and CD stretching regions are reported for various $\mathrm{MeMn}(\mathrm{CO})_{5}$ and $\mathrm{MeRe}(\mathrm{CO})_{5}$ species. Interpretation is made in terms of a freely internally rotating methyl group whose individual bond-stretching force constants vary during the rotation. The "average" "isolated" CH stretching frequencies of 2955.0 and $2934.6 \mathrm{~cm}^{-1}$ observed in the CHD_{2} spectra are used to predict $r_{0}{ }^{\mathrm{CH}}$ values of $1.095_{9} \AA(\mathrm{Mn})$ and $1.098_{0} \AA(\mathrm{Re})$, respectively, HCH angles, A_{0}, and $D^{\circ}{ }_{298}(\mathrm{C}-\mathrm{H})$ values. The CH bonds are of medium strength, that in the Re compound being slightly weaker than the Mn one and displaying an inverse relationship to $D\left(\mathrm{M}-\mathrm{CH}_{3}\right)$.

The methyl pentacarbonyls of manganese and rhenium have been the subject of a number of structural studies, involving gas-phase electron diffraction ${ }^{2,3}$, X-ray diffraction and incoherent inelastic neutron scattering, ${ }^{4}$ and vibrational spectroscopy. ${ }^{4-8}$ These have left uncertain two structural features associated with the methyl group, its geometry, and its internal rotational motion. The disordered structure of the Mn crystal meant that no geometric information could be obtained from the X-ray study, while the hydrogen positions were not located by the electron-diffraction experiments. ${ }^{2,3}$ This situation may be remedied through a study of the CH stretching region of the CHD_{2} species, from whose "isolated" CH stretching frequencies, bond lengths and HCH angles may be predicted by the use of correlation graphs. ${ }^{\text {ga.b }}$

Prior evidence relating to the internal rotation problem in the Mn compound is of three kinds. A Raman line at $174 \mathrm{~cm}^{-1}$ and part of a broad IINS feature at $169 \mathrm{~cm}^{-1}$, both in the crystal at 10 K , have been assigned to a torsional mode of the CH_{3} group. ${ }^{4}$ As discussed below, this would be impossible with a V_{12} potential term and would require a high barrier of $>350 \mathrm{~cm}^{-1}$ with a V_{4} one. The second and third observations are from infrared spectra and apparently conflict with each other. The antisymmetric

[^0]stretching mode of the methyl group is split into two components in the gas phase, while in solution and in the solid it presents a single broad band whose width varies little with temperature. ${ }^{6}$ The latter observation leads to an estimate of the barrier height of 944 $\pm 175 \mathrm{~cm}^{-1} .{ }^{24}$

Here again the infrared study of partially deuterated species may throw some light, at the cost, however, of introducing a further complication. Previous work in this field ${ }^{83}$ has revealed a variety of circumstances in which CH bonds within a methyl group vary in strength according to their angular position within the molecule. Where internal rotation is restricted, these have straightforward effects in the spectra. Infrared bands appear at frequencies corresponding to bonds in each of the various potential minima. However, for the case of low barriers, as in MeNO_{2}, $\mathrm{MePh},{ }^{10,11} \mathrm{MeBF}_{2}, \mathrm{MeBCl}_{2}, \mathrm{Me}_{3} \mathrm{~B}$, and (MeBO) ${ }_{3}$, ${ }^{12}$ the spectra and their interpretation are more complex. Theoretical treatments of a CH_{3} group and of a CHD_{2} one rotating against an infinitely heavy, planar skeleton, as in the above molecules, have been given by Sheppard and Woodman ${ }^{13}$ and Cavagnat and Lascombe ${ }^{11}$ (hereafter SW and CL, respectively).

Taken together, this prior work yields strong evidence for a variation of CH bond strength during the essentially free internal rotation in the above cases. While no corresponding theory exists for the vibration-rotation transitions of a methyl group rotating against a $C_{4 v}$ skeleton, as in the pentacarbonyls, features similar to the earlier ones may reasonably be expected to occur if the barrier is likewise very low. Since this work is little known, it will be necessary to give a more detailed review of it before we can conduct a meaningful discussion of the pentacarbonyl spectra.

[^1]
Vibrational Spectra of $\mathbf{M e}_{2} \mathbf{M}, \mathrm{MeXY}_{2}$, and MeXYZ (Planar Skeleton) Systems

(a) High-Barrier Case (Local C_{s} Symmetry). In systems such as $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2},{ }^{14}$ and σ-xylene ${ }^{15}$ there is a relatively high barrier to internal rotation of the methyl group which adopts a conformation in which one bond, designated CH_{5} or $\mathrm{CH}_{\|}$lies in the skeletal plane of the molecule, and the other two lie above and below it, respectively $\left(\mathrm{CH}_{\mathrm{a}}\right)$, but not of course in a plane at right angles to the skeletal one for which we reserve the symbol CH_{\perp}. Two $\nu^{i s}(\mathrm{CH})$ bands ${ }^{16}$ are seen, the higher frequency one due to CH_{s} and the lower to the two CH_{a} bonds. These may be identified by means of their band contours, or through the use of the frequency sum rule ${ }^{17}$ for CH stretches: $\sum_{i}^{3} \nu^{\text {is }}(\mathrm{CH})=$ $\sum_{i}^{3} \nu\left(\mathrm{CH}_{3}\right)$. Use of this rule of course necessitates initially correcting the CH_{3} group frequencies for the universal Fermi resonances, on $\nu_{s}\left(\mathrm{CH}_{3}\right)$ especially. A slightly more sophisticated approach is to interrelate the $\nu^{\text {is }}(\mathrm{CH})$ and $\nu\left(\mathrm{CH}_{3}\right)$ frequencies through the " 3×3 " refinement ${ }^{18}$ which essentially deduces stretch-stretch interaction force constants from the displacements of the $\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)$ frequencies from the $\nu^{\text {is }}(\mathrm{CH})$ ones. ${ }^{19}$ If an incorrect assignment has been made, anomalous values of these interaction constants appear.
(b) Low-Barrier Systems. (i) $\mathbf{M e}_{2} \mathbf{M}$ Systems $(\mathbf{M}=\mathbf{Z n}, \mathrm{Cd}$, Hg). In this series of molecules, the barrier to internal rotation is very low indeed and the perpendicular bands of the CH_{3} or CD_{3} species exhibit K spacings characteristic of a single, freely internally rotating methyl group. No variation of CH stretching force constant with orientation seems likely, and the CHD_{2} spectrum is in agreement with this. ${ }^{20}$ As seen in Figure 1, for $\mathrm{Zn}\left(\mathrm{CHD}_{2}\right)_{2}$, the CH stretching band is hybrid in nature, with both parallel and perpendicular components, the latter showing broad Q branches with a spacing appropriate for a single CHD_{2} rotor.
(ii) $\mathrm{CHD}_{2} \mathbf{X Y}_{2}$ Systems. The vibration-internal rotation levels and the resulting infrared and Raman spectra have been treated by CL. ${ }^{11}$ The effect of a change in CH force constant during the internal rotation is introduced through a large V_{2} term and a smaller V_{4} term which are added to the small V_{6} term derived from the conventional barrier to rotation. A curious result of this in the two cases studied, i.e., $\mathrm{CHD}_{2} \mathrm{NO}_{2}$ and $\mathrm{CHD}_{2} \mathrm{Ph}$, is that the minimum in the torsional potential in the ground vibrational state is determined by the zero-point energy of the single CH bond, which is a minimum when this bond is at right angles to the skeletal plane $\left(\mathrm{CH}_{\perp}\right)$. The torsional potential barrier in the first excited vibrational state is derived almost wholly from the V_{2} and V_{4} terms and is much greater than that in the ground state, but not so great as to prevent many transitions occurring to states well above the barrier, both in the Raman isotropic scattering spectrum and in the infrared. The former yields a frequency which is an average over all torsional angles, and the same average band appears with a type A contour in the infrared from the component of the dipole derivative parallel to the top axis. A small number of transitions from the ground torsional states give rise to Raman and infrared bands at the frequency $\nu\left(\mathrm{CH}_{\perp}\right)$, the infrared one having a type C contour. Components of $(\partial \mu / \partial r)_{\text {CH }}$ perpendicular to the top axis produce two irregular series of frequencies respectively above and below $\nu(\mathrm{CH})^{\text {av }}$. Thus far theory and experiment agree satisfactorily. Earlier infrared spectra of CH $\mathrm{D}_{2} \mathrm{BY}_{2}$ compounds, ${ }^{12}$ however, were fundamentally different in appearance from those of $\mathrm{CHD}_{2} \mathrm{NO}_{2}$ or $\mathrm{CHD}_{2} \mathrm{Ph}$ in that two broad bands of similar intensity were seen in each case, the lower one of which in several instances had a contour recognizably type

[^2]

Figure 1. Infrared spectrum of $\mathrm{Zn}\left(\mathrm{CHD}_{2}\right)_{2}$ in the gas phase (resolution $0.12 \mathrm{~cm}^{-1}$) showing parallel and perpendicular components of the hybrid $\nu(\mathrm{CH})$ band, the latter with K spacing characteristic of a freely internally rotating CHD_{2} group with unvarying force constant. ${ }^{20}$

C in character. The Raman spectrum in each case consisted of a single, broad, often asymmetric line intermediate in frequency between those of the two infrared bands. The relationship between these frequencies suggested that the Raman one was $\nu(\mathrm{CH})^{\text {av }}$, as in the $\mathrm{CHD}_{2} \mathrm{NO}_{2}$ and $\mathrm{CHD}_{2} \mathrm{Ph}$ cases, whereas the upper and lower infrared bands represented $\nu\left(\mathrm{CH}_{\|}\right)$and $\nu\left(\mathrm{CH}_{\perp}\right)$, respectively, arising from the x and y components of $(\partial \mu / \partial r)_{\mathrm{CH}}{ }^{21}$ The absence of $\nu(\mathrm{CH})^{\text {av }}$ in the infrared was attributed to a negligible z component of $(\partial \mu / \partial r)_{\mathrm{CH}}$, which idea is supported by the absence or low intensity of $\nu_{s}\left(\mathrm{CH}_{3}\right)$ in the $\mathrm{CH}_{3} \mathrm{BY}_{2}$ infrared spectra. The principal weakness of the above interpretation is the lack of any theoretical basis for assigning the higher band as $\nu\left(\mathrm{CH}_{\|}\right)$since existing theory predicts only an irregular series of K lines above $\nu(\mathrm{CH})^{\mathrm{av}}$, whose center of gravity is indeterminate. ${ }^{22}$ There seems little doubt, however, that in all these molecules the CH bond strength is a maximum in the skeletal plane $\left(\nu\left(\mathrm{CH}_{\|}\right)\right)$, and a minimum at right angles to it $\left(\nu\left(\mathrm{CH}_{\perp}\right)\right)$.
(iii) $\mathrm{CH}_{3} \mathbf{X Y}_{2}$ Species. If one assumes a $\cos 2 \phi\left(V_{2}\right)$ variation in the strength of each individual CH bond, the 3×3 refinement shows that the CH_{3} group has three different vibration frequencies which remain essentially constant for different chosen internal rotation angles, the higher two of course being essentially antisymmetric motions. For the conformation I in Figure 2A the symmetry coordinates $2 r_{1}-r_{2}-r_{3}$ and $r_{2}-r_{3}$ describe the higher and lower antisymmetric stretches, respectively (the former approximately, the latter exactly): however, after a 90° rotation in which II is reached, the frequencies have been reversed. This situation is the one treated by SW^{13} for the case of a CH_{3} group, also rotating against an infinitely heavy framework, the in-plane higher frequency $\nu_{\mathrm{as}}(\|)$ and the out-of-plane lower one $\nu_{\mathrm{as}}(\perp)$ being assumed to be precisely constant. ${ }^{23}$ The perturbation to the vibration-internal rotation levels, which is produced by this change in vibration frequency of a particular symmetry coordinate during internal rotation, causes a hole to develop in the perpendicular type band which would have arisen if the two vibrations had been degenerate. No K transitions in fact occur within the limits $\nu^{\text {av }}$ $\pm 1 / 2 \Delta \nu$ which describe the maximum $\left(\nu_{a s}\left(\mathrm{CH}_{3}\right)(\| \mid)\right.$) and minimum $\left(\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)(\perp)\right)$ frequencies, respectively. For fast rotation, at high

[^3]A

$\nu_{1} \quad 2 r_{1}-r_{2}-r_{3}$
$\nu_{2} \quad r_{2}-r_{3}$
$\Gamma_{2}-\Gamma_{3}$
$2 \Gamma_{1}-\Gamma_{2}-\Gamma_{3}$
B

$\nu_{1} \quad 2 r_{4}-r_{2}-r_{3}$

$2 r_{2}-r_{1}-r_{3}$

$\nu_{1} \quad 2 r_{3}-r_{1}-r_{2}$
$2 r_{1}-r_{2}-r_{3}$

Figure 2. The description of the high (ν_{1}) and low $\left(\nu_{2}\right) \nu_{\text {as }}\left(\mathrm{CH}_{3}\right)$ vibrations for various internal rotation angles, ϕ, over a half cycle: (A) $\mathrm{CH}_{3} \mathrm{XY}_{2}$ and (B) $\mathrm{CH}_{3} \mathrm{XY}_{4}$ systems.

K values, the K spacings settle down to those expected for a normal perpendicular band with $\nu_{0}=\nu^{\mathrm{av}} \pm A(1-2 \zeta)$. The treatment does not take into account the overall rotation of the molecule so that quantitative prediction of actual band contours is not possible. However, in all planar MeXY_{2} systems, type C contours may be expected from transitions in the neighborhood of $\nu_{\mathrm{as}}{ }^{-}$ $\left(\mathrm{CH}_{3}\right)(\perp)$, while those near $\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)(\| \mid)$ give rise to type B contours in $\mathrm{MeNO}_{2}, \mathrm{MePH}$, and MeBF_{2} but a type A one in MeBCl_{2}. The extent to which such contours may be discerned is discussed by Dempster, Powell, and Sheppard, ${ }^{24}$ in connection with the spectra of $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CD}_{3}$ and $\mathrm{C}_{6} \mathrm{D}_{5}-\mathrm{CH}_{3}$, and appears to depend on the magnitude of the vibrational splitting [$\nu_{\mathrm{as}}(\| \mid)$ $\nu_{\mathrm{as}}(\perp)$] relative to the K line separation, which of course reflects the inertial constant of the rotating group. Thus, much better defined A-, B-, or C-type contours are expected, and usually found, for CD_{3} species than for CH_{3} ones. The well-defined centers of such contours surely then define $\nu_{\mathrm{as}}(| |)$ and $\nu_{a s}(\perp)$. An important conclusion from this work therefore is that observation of characteristic A-, B-, or C-type contours for $\nu_{\mathrm{as}}\left(\mathrm{XY}_{3}\right)$ motions does not mean that internal rotation is necessarily restricted.

This splitting of $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$ or $\nu_{\mathrm{as}}\left(\mathrm{CD}_{3}\right)$ due to force constant variation is in contrast to the SW analysis of the effect of a conventional V_{6} barrier on a $\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)$ mode whose degeneracy remains unlifted. Here holes develop on each side of the band center as the barrier is raised, but the intensity at the center increases at the same time. This suggests that where it is hard to tell from the CHD_{2} spectrum whether the effects seen are due to a conventional V_{6} barrier or to a V_{2} / V_{4} variation in vibration frequency, a choice might be made from the appearance of the $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$ spectrum.

The ultimate aim should of course be to integrate the information from both $\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)$ and $\nu\left(\mathrm{CHD}_{2}\right)$ spectra. Efforts to do this on a purely vibrational basis, through the " 3×3 " refinement, have been made ${ }^{12}$ but cannot be said to be successful, in so far as the data can only be fitted, and that not too well, by angular variations in the stretch-stretch interaction force constants which
(24) Dempster, A. B.; Powell, D. B.; Sheppard, N. Spectrochim. Acta, Part A 1975, 31A, 245.

Figure 3. Plots of selected $\nu(\mathrm{CH})$ and $\nu(\mathrm{CD})$ values for $\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{D}$, and CHD_{2} groups as a function of rotation angle, ϕ, over a half cycle of change for the parameters of case 2 , Table I.
are so large as to be implausible.
(iv) Extension to MeXY_{5} Systems ($\mathbf{M}=\mathbf{M n}, \mathrm{Re} ; \mathbf{Y}=\mathbf{C O}$). We note first that a further infrared study of the carbonyl stretching regions of these compounds, in the gas phase, shows no sign of any departure of the skeleton from $C_{4 c}$ symmetry. ${ }^{25}$ Thus the degeneracy of the e species fundamental remains unlifted, to within about $1 \mathrm{~cm}^{-1}$ as seen in Figure 9 for $\mathrm{CH}_{3} \mathrm{Re}(\mathrm{CO})_{5}$. There is no reason therefore to suppose that a torsional barrier of order less than $12\left(V_{12}\right)$ can be present in a symmetrical $\left(\mathrm{CH}_{3}\right)$ methyl group.
For a CHD_{2} group, a variation in the individual CH force constant will lead to a V_{4} term with the possibility also of a smaller V_{8} term, by analogy with the V_{3} and V_{6} components of the $\mathrm{CHD}_{2} \mathrm{NO}_{2}$ potential. Again, by analogy with MeNO_{2}, the V_{4} / V_{8} terms should greatly exceed the V_{12} one of conventional origin.

The plane of the V_{4} barrier is hard to predict. If the variation in individual CH bond strength is determined mainly by the relative positions of the nuclei, then by analogy with MeXY_{2} systems the maximum strength, and therefore the barrier, would occur when the CH bond eclipses an equatorial CO bond. If by contrast repulsive interactions between CH bonding electrons and filled π-type orbitals are the dominant effect in weakening the CH bond, as has been suggested for propene, ${ }^{14}$ then two effects have to be considered, involving the $\mathrm{d}_{x y}$ and $\mathrm{d}_{x z}, \mathrm{~d}_{y z}$ pair, respectively. All three of these d orbitals are filled, apart from donation to the π orbitals of the carbonyls. The $\mathrm{d}_{x z}, \mathrm{~d}_{y z}$ pair is much closer to the CH bonds than the $\mathrm{d}_{x y}$ orbital, which lies in the equatorial plane, and will be coplanar with the CH and CO bonds in the eclipsed conformation. Repulsive interactions will therefore involve mainly the $\mathrm{d}_{x z}$ and $\mathrm{d}_{y z}$ orbitals, so that the CH bonds are likely to be weakest in the eclipsed conformation and strongest when staggered.

It will be apparent that we approach the problem with a VSEPR type model in mind, rather than by invoking hyperconjugation. The latter may represent a satisfactory MO description of the phenomena, but it cannot be seen to be directly related to terms

Table I. Sample Calculations of Vibration Frequencies for V_{4} and V_{8} Variations in CH Bond Stretching Force Constant $\left(f_{4}=0.0874\right)^{a}$

group		(1) $f_{8}=0$			(2) $f_{8}=0.3 f_{4}$		
		extremes ${ }^{\text {b }}$	span	av	extremes ${ }^{\text {b }}$	span	av
CH_{3}	ν_{1}	2997.2, 2993.7	3.5	2995.5	3003.4, 2989.6	13.8	2997.0
	ν_{2}	2966.3, 2971.1	4.8	2968.7	2962.2, 2972.7	10.5	2967.0
	ν_{3}	2893.3, 2892.2	1.1	2892.0	2891.2, 2894.6	3.4	2892.7
$\mathrm{CD}_{3}{ }^{\text {c }}$	ν_{1}	2245.7, 2244.4	1.3	2245.1	2249.7, 2241.3	8.4	2245.7
	ν_{2}	2223.9, 2225.4	1.5	2224.6	2220.8, 2227.7	6.9	2223.9
	ν_{3}	2102.2, 2102.0	0.2	2102.1	2101.3, 2102.8	1.5	2102.0
CHD ${ }_{2}{ }^{\text {c.d }}$	ν_{1}	2981.8, 2928.0	53.8	2955.0	2989.8, 2935.7	54.1	2955.4
	ν_{2}	2223.9, 2244.4	20.5	2235.6	2220.8, 2244.7	23.9	2235.5
	ν_{3}	2134.9, 2154.2	19.0	2143.1	2132.0, 2151.4	19.4	2142.7
$\mathrm{CH}_{2} \mathrm{D}^{\text {c.d }}$	ν_{1}	2966.3, 2994.4	28.1	2984.3	2962.2, 2999.6	37.4	2984.3
	ν_{2}	2913.4, 2940.7	27.3	2923.2	2910.4, 2936.8	26.4	2922.7
	ν_{3}	2207.7, 2167.9	39.8	2187.8	2213.6, 2173.9	39.7	2188.2
	$G_{100}{ }^{\text {e }}$	$6998.5,7033.3$	34.8		7005.3, 7049.5	44.2	
	$G_{000}{ }^{\text {e }}$	4032.2, 4039.4	7.2		4043.1, 4050.2	7.1	

${ }^{a} f_{i}=f_{0}+f_{4} \cos 4\left(\phi+\delta_{;}\right)+f_{8} \cos 8\left(\phi+\delta_{i}\right)$ where $f_{0}=4.7765, f_{4}=0.0874$ for both cases above, and $\delta_{i}=0^{\circ}, 120^{\circ}$, and 240° for $i=1,2$, and 3. Throughout, $f^{\prime}=0.026$. The value of f_{4} yields maximum and minimum values of $\nu_{1}\left(\mathrm{CHD}_{2}\right)$ agreeing approximately with the observed wings. This may represent an overestimate (see text), ${ }^{b}$ Over 15° in ϕ for $\mathrm{CH}_{3}, \mathrm{CD}_{3}, 45^{\circ}$ for CHD_{2} and $\mathrm{CH}_{2} \mathrm{D}$. ${ }^{c}$ Computed $\nu(\mathrm{CD}) \times 1.011$ to offset anharmonicity. ${ }^{d}$ The minima and maxima in ν_{1}, ν_{2}, and ν_{3} do not always occur at the same value of ϕ. ${ }^{e}$ Excited and ground-state energies (cm^{-1}) in the three $\mathrm{CH} / \mathrm{CD}$ stretching vibrations.
in the Hamiltonian and therefore does not supply a reason for the effect.

The effect of a V_{4} variation in the individual CH stretching force constant on the vibrations of a CH_{3} group is illustrated in Figure 3 and Table I, which includes also the effect of an added V_{8} contribution. Three frequencies result, which in the absence of the V_{8} term are essentially constant, as in $\mathrm{CH}_{3} \mathrm{XY}_{2}$ systems. However, a particular symmetry coordinate now yields the same frequency every 90°, as seen in Figure 2B. Thus it is no longer possible to associate the higher antisymmetric stretching frequency with one particular direction (say, x) and the lower such frequency with the y direction, as in $\mathrm{CH}_{3} \mathrm{XY}_{2}$ and the SW model. ${ }^{26}$ It would be surprising, however, if the resulting spectrum were not similar to that predicted by the SW model, namely, a perpendicular band with no transitions inside the limits $\nu_{\mathrm{as}}(\max)-\nu_{\mathrm{as}}(\min)$.

For a $\mathrm{CH}_{3} \mathrm{XY}_{5}$ molecule where $\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)$ remains degenerate, and the methyl group suffers a V_{12} potential, calculations of energy levels have been made for V_{12} barriers in the range $1-10 \mathrm{~cm}^{-1},{ }^{27}$ and the results for a CD_{3} group are illustrated in Figure 4, for states derived from $K=0-6$. The values differ very little from those for V_{3} or V_{6} barriers, and like them, they increase linearly with increase in V_{12}, the spacings remaining unchanged. However, the first K level to be split by the perturbation is the $K=6$ one, in contrast to the $K=3$ one in the V_{6} case. The resulting spectrum should resemble that of Figure 4 of ref 13 except that the holes on each side of the center develop further out than in the $\mathrm{CH}_{3} \mathrm{XY}_{2}$ case, having even more intensity in between.

We note finally that for these methyl pentacarbonyl compounds, the substituent dimensions are such that the molecules are approximately spherical tops for whose infrared bands PQR-type contours should be found with PR spacing of about $10 \mathrm{~cm}^{-1}$, having no marked dependence on the orientation of the dipole derivative within the skeleton of the molecule. For the parallel bands, the PR separations calculated from the electron-diffraction dimensions, using the formula of Gerhard and Dennison, ${ }^{28}$ are $9.5(\mathrm{Mn})$ and $8.9 \mathrm{~cm}^{-1}$ (Re), respectively.

Experimental Section

Infrared spectra in the gas phase were obtained on a Nicolet 7199 FTIR spectrometer, with a resolution of $0.12-0.5 \mathrm{~cm}^{-1}$, using gas cells of $10-20 \mathrm{~cm}$ length or a multiple reflection cell with path lengths up to 11 m , gas pressures being in the range from 1 torr up to the vapor pressure at room temperature. Infrared crystal spectra were obtained from films deposited on a CsI window at 78 K with use of a Perkin-Elmer

[^4]

Figure 4. Internal rotation energy levels for a CD_{3} group with $A=2.614$ cm^{-1}, experiencing a V_{12} sinusoidal barrier.

225 spectrometer. Samples were prepared by reacting the appropriately labeled methyl iodide with $\mathrm{NaM}(\mathrm{CO})_{5}$ in tetrahydrofuran.

Results

The frequencies observed for the various $\mathrm{MeM}(\mathrm{CO})_{5}$ species are listed in Tables II (Mn) and III (Re), respectively.

Figure 5 compares the gas-phase infrared spectra of $\mathrm{CH}_{3}-$ $\mathrm{Mn}(\mathrm{CO})_{5}$ and $\mathrm{CH}_{3} \mathrm{Re}(\mathrm{CO})_{5}$, respectively, in the CH stretching region. The spectrum of $\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{5}$ is as reported earlier. ${ }^{6}$ The origin of the bands at 3010.0 and $2950.2 \mathrm{~cm}^{-1}$, earlier identified as components of $\nu_{\text {as }}\left(\mathrm{CH}_{3}\right),{ }^{6}$ is confirmed by their shifts of 10 and $11.5 \mathrm{~cm}^{-1}$, respectively, on ${ }^{13} \mathrm{C}$ substitution. By contrast, the ${ }^{13} \mathrm{C}$ shifts on $\nu_{\mathrm{s}}\left(\mathrm{CH}_{3}\right)$ and $2 \delta_{\mathrm{a}}\left(\mathrm{CH}_{3}\right)$ at 2917.6 and 2830.7 are much smaller, 4.5 and $5.5 \mathrm{~cm}^{-1}$, respectively.
The spectrum of the rhenium compound has all the features of the manganese one but in addition has a weak broad asymmetric band centered at $\sim 2967 \mathrm{~cm}^{-1}$, also with a ${ }^{13} \mathrm{C}$ shift appropriate to $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$. Both $\nu_{\mathrm{s}}\left(\mathrm{CH}_{3}\right)$ bands have an incipient PQR-type contour. The smaller separation of the $\nu_{s}\left(\mathrm{CH}_{3}\right)$ and $2 \delta_{2}\left(\mathrm{CH}_{3}\right)$ Re bands is in keeping with the stronger intensity of the latter

Figure 5. Infrared spectra of gaseous $\mathrm{CH}_{3} \operatorname{Re}(\mathrm{CO})_{5}$ (resolution $0.5 \mathrm{~cm}^{-1}$) and $\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{5}$ (resolution $0.25 \mathrm{~cm}^{-1}$), $\nu(\mathrm{CH})$ region.

Figure 6. Infrared spectra of gaseous $\mathrm{CHD}_{2} \operatorname{Re}(\mathrm{CO})_{5}$ and $\mathrm{CHD}_{2} \mathrm{Mn}(\mathrm{C}-$ $\mathrm{O})_{5}$, (resolution as for Figure 5), $\nu(\mathrm{CH})$ region.
relative to the former, and increased Fermi resonance.
Figure 6 shows the infrared gas-phase spectra of the two CHD_{2} compounds. Each has a relatively strong PQR-type band with exactly the spacings predicted above for a symmetric top parallel band, and in addition there are broad weak wings on each side, spaced almost symmetrically.

Figure 7. Infrared spectrum of gaseous $\mathrm{CH}_{2} \mathrm{DMn}(\mathrm{CO})_{5}$, (resolution 0.5 cm^{-1}), $\nu(\mathrm{CH})$ region.

Figure 8. Infrared spectra of gaseous $\mathrm{MeMn}(\mathrm{CO})_{5}$ species, $\nu(\mathrm{CD})$ region (resolutions: ${ }^{12} \mathrm{C}$ samples, $0.12-0.5 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}$ samples, $1 \mathrm{~cm}^{-1}$). Both active $\mathrm{a}_{1}, \nu(\mathrm{CO})$, and "inactive" $\mathrm{b}_{1}, \nu(\mathrm{CO})$, fundamental bands are also seen. (See also ref 25 .)

Figure 7 shows the spectrum of $\mathrm{CH}_{2} \mathrm{DMn}(\mathrm{CO})_{5}$ in the gas phase. This contains two weak broad bands at high frequency, and a third stronger one with shape reminiscent of $\nu_{s}\left(\mathrm{CH}_{3}\right)$, at $2940.6 \mathrm{~cm}^{-1}$.

The infrared spectra in the CD stretching region are complicated by the presence of both fundamentals and combinations arising from the CO stretching vibrations. The spectra of the Mn compounds are compared in Figure 8. $\nu_{\mathrm{as}}\left(\mathrm{CD}_{3}\right)$ is associated with the peaks at $2256.8,2237$, and $2213.5 \mathrm{~cm}^{-1}$, which all appear to move about $14 \mathrm{~cm}^{-1}$ on ${ }^{13} \mathrm{C}$ substitution. There may be slight interference from the carbonyl combination band which in the CH_{3} compound has two maxima at 2222 and $2215 \mathrm{~cm}^{-1}$. The latter probably reappear in the CHD_{2} compound as the maxima at 2219.6 and $2213 \mathrm{~cm}^{-1}$.

Table II. Infrared Bands in the CH and CD Stretching Regions of $\mathrm{MeMn}(\mathrm{CO})_{5}$ Species a

CH_{3}			CHD_{2}	
gas ${ }^{\text {b }}$	cryst ${ }^{\text {c }}$	soln ${ }^{\text {d }}$	gas ${ }^{e}$	cryst ${ }^{\text {c }}$
3010.0 w (10)			2983 w, hd	
	2992 w, bd (10.5)	2983	2960.0 r)	2966 w, bd
	2964 sh (~ 10)		$\left.\begin{array}{l} 2955.0 \mathrm{q} \\ 2950.5 \mathrm{p} \end{array}\right\} \mathrm{m}$	2953 vw, sh
2950.2 w (11.5)			2928 w, bd	
$2917.6 \mathrm{~ms} \mathrm{(4.5)}$	2918 m , as (4.0)	2910		
2830.7 w (5.5)	2816 w (5.6)		2256.2 w	2266 vw
			2219.6 w	2231 W
$2215{ }^{\text {w }}$ (0)			2213 w	
$2147.6 \mathrm{vw}, \mathrm{q}$			~ 2200 w, bd	
$2142.2 \mathrm{vw}, \mathrm{q}$			2147.5 pqr, s	2151 m
2133.8 sh				
2083.4 q				
	CD_{3}			
gas ${ }^{\text {b }}$	cryst ${ }^{\text {c }}$	soln ${ }^{\text {d }}$	gas ${ }^{f}$	cryst
$2237 \text { nw (19?) }$	$2240 \mathrm{w}(14)$	2233	$2977 \text { w, bd, as }$	2988 w, bd
2213.5 w (13.9)	2216 vw , sh		2940.6 q, m	2946 m
$2147.4 \mathrm{vw}, \mathrm{q},(0.4)$			2800 vw	$\begin{aligned} & 2918 \mathrm{sh} \\ & 2786 \mathrm{vww} \end{aligned}$
2141.1 sh (~ 0)			2214.8 w	2201 w
2133.3 sh (~ 0)			2184.5 pqr, w	2178 rw
2182 sh (~ 0)			2147.5 q , vw	
2071 m (5.5)			1409 vw	

${ }^{a}$ Excluding $\nu(\mathrm{CO})$ fundamentals. In brackets, ${ }^{13} \mathrm{C}$ shifts. ${ }^{b}$ Resolution $0.25 \mathrm{~cm}^{-1}$. ${ }^{c}$ Resolution $\sim 1 \mathrm{~cm}^{-1}$. ${ }^{d}$ Reference 6 . ${ }^{e}$ Resolution $0.12 \mathrm{~cm}^{-1}$. f Resolution $0.5 \mathrm{~cm}^{-1}$.

A band in the CD_{3} compound at $2071 \mathrm{~cm}^{-1}$ with a marked ${ }^{13} \mathrm{C}$ shift of $5.5 \mathrm{~cm}^{-1}$ must be associated with $\nu_{\mathrm{s}}\left(\mathrm{CD}_{3}\right)$. It is, however (see below), much too low for an unperturbed $\nu_{\mathrm{s}}\left(\mathrm{CD}_{3}\right)$ frequency. The CHD_{2} compound has two broad features in the 2200-2260 cm^{-1} region, the lower of which is badly overlapped by the probable combination band, plus a well-defined PQR band at $2147.5 \mathrm{~cm}^{-1}$. The latter frequency coincides exactly with that of a very weak combination band in the CH_{3} and CD_{3} spectra, raising the possibility that it may be the same combination but with greatly enhanced intensity due to breakdown of selection rules following the asymmetric substitution. The $\mathrm{CH}_{2} \mathrm{D}$ spectrum shows what may be the same effect-a band at $2214.8 \mathrm{~cm}^{-1}$ which could be merely an enhanced version of the $2215-\mathrm{cm}^{-1}$ band seen in the CH_{3} spectrum. The PQR-type band at $2184.5 \mathrm{~cm}^{-1}$ is clearly the CD stretching counterpart of the parallel $\nu(\mathrm{CH})$ band in the CHD_{2} spectrum. Any wings that it might possess are obscured by neighboring bands.

Figure 9 shows the spectra of $\mathrm{CH}_{3} \mathrm{Re}(\mathrm{CO})_{5}$ and $\mathrm{CD}_{3} \operatorname{Re}(\mathrm{CO})_{5}$ $\left({ }^{12} \mathrm{C}\right.$ and ${ }^{13} \mathrm{C}$) in the region $2300-1900 \mathrm{~cm}^{-1}$. This shows all the $\nu(\mathrm{CO})$ fundamentals and certain combinations, including one at $2216.8 \mathrm{~cm}^{-1}$ in the CH_{3} compound. The latter coincides with the central maximum of three peaks clearly due mainly to $\nu_{\mathrm{as}}\left(\mathrm{CD}_{3}\right)$, at 2241,2219 , and $2193.5 \mathrm{~cm}^{-1}$ in the ${ }^{12} \mathrm{CD}_{3}$ compound. In the ${ }^{13} \mathrm{CD}_{3}$ the highest peak at $2223 \mathrm{~cm}^{-1}$ is clearly enhanced in intensity by reason of this combination, while the ${ }^{13} \mathrm{CD}_{3}$ shoulder at $2204 \mathrm{~cm}^{-1}$ is evidence that $\nu_{\text {as }}\left(\mathrm{CD}_{3}\right)$ on its own exhibits a central maximum.

Changes in the band contour near $2120 \mathrm{~cm}^{-1}$ are presumably due to the intervention of $\nu_{\mathrm{s}}\left(\mathrm{CD}_{3}\right)$.

There may also be extra absorption in the CD_{3} spectrum near $2080 \mathrm{~cm}^{-1}$.

Crystal Phase. Figure 10 shows the spectra of the $\mathrm{CH}_{3} \mathrm{Mn}$ and $\mathrm{CHD}_{2} \mathrm{Mn}$ compounds, and Figure 11 shows the rhenium compounds. In both CH_{3} compounds the $\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)$ region features a broad band with two likely components. In the Mn compound, the higher frequency band is much more intense than the lower, whereas in the Re compound, the lower band is on initial deposition (spectrum a) slightly stronger than the higher frequency one. Annealing (spectrum b) reverses the intensities. The CHD_{2} bands in both cases are broad, the Mn one showing a weak sharp maximum at $2953 \mathrm{~cm}^{-1}$, in addition to the broad one at $2966 \mathrm{~cm}^{-1}$. The shift of intensity toward higher frequency seen in $\nu_{\mathrm{as}}{ }^{-}$

Figure 9. Infrared spectra of gaseous $\operatorname{MeRe}(\mathrm{CO})_{5}$ species in the $\nu(\mathrm{CD})$ region. (Resolution $0.5 \mathrm{~cm}^{-1}$). All four $\nu(\mathrm{CO})$ fundamental bands are also shown for the ${ }^{12} \mathrm{CH}_{3}$ species.

Figure 10. Infrared spectra at 78 K of solid films of CH_{3} and CHD_{2} species of $\mathrm{MeMn}(\mathrm{CO})_{s}$: (a) initial film, (b) after annealing.

Table III. Infrared Bands in the CH and CD Stretching Regions of $\mathrm{MeRe}(\mathrm{CO})_{\mathrm{s}}$ Species

CH_{3}			CHD_{2}		
gas ${ }^{\text {a }}$	solid (1) ${ }^{\text {b }}$	solid (2) ${ }^{\text {b }}$	gas ${ }^{\text {a }}$	solid (1) ${ }^{\text {b }}$	solid (1) ${ }^{\text {b }}$
2996.5 w (10.5)			2963 bd, as		
	~ 2974 w, bd	~ 2974 w, bd			
2967 w , as (11.5)					
$2929 \mathrm{sh}^{\text {d }}$	~ 2951 w, bd	~ 2954 w, bd	$\left.\begin{array}{l}2934.6 \\ 2930.4\end{array}\right\} s$	$2930^{\text {c }}$	$2939{ }^{\text {c }}$
			2906 bd, as		
2907.1 s (4.7)	2903.8 m	2907.5 m			
	2848 ww	n.o.			
2835.8 m (3.2)	2827.3 w	~ 2827 w			
2216.8 vw				2212 w, bd	
				2143 w	
2132.8 s (0)	2130 s	n.o.		2125 s	
	(1428.6 w)	n.o.		2125	
gas ${ }^{\text {a }}$	solid (1) ${ }^{\text {b }}$				
2241 w (18)					
2219 w (15)	2219 w, bd				
2193.5 w (12.2)					
2131 sh (~ 7)	2132 w				
$2114.3 \mathrm{~s}(0.4)$	2119 m				

${ }^{a}$ Resolution $0.5 \mathrm{~cm}^{-1}$; Nicolet FTIR. In brackets, ${ }^{13} \mathrm{C}$ shifts. ${ }^{b}$ Resolution $\sim 0.8 \mathrm{~cm}^{-1}$; Perkin-Elmer 225, $\sim 78 \mathrm{~K}$ on CsI window; (1) unnealed, (2) annealed. ${ }^{c}$ Half-widths in solid: (1) $35 \mathrm{~cm}^{-1}$ (2) $38 \mathrm{~cm}^{-1}$. ${ }^{d}$ Submerged by band at $2902.4 \mathrm{~cm}^{-1}$ in ${ }^{13} \mathrm{C}$ species.

Figure 11. Infrared spectra at 78 K of solid films of CH_{3} and CHD_{2} species of $\mathrm{MeRe}(\mathrm{CO})_{\mathrm{g}}$: (a) initial film, (b) after annealing.
$\left(\mathrm{CH}_{3}\right)(\mathrm{Re})$ upon annealing is reproduced also in the $\mathrm{CHD}_{2} \mathrm{Re}$ spectrum where the maximum moves up about $9 \mathrm{~cm}^{-1}$.

Discussion

Our first attempt to analyze the spectra will be based on the frequency sum rule. We must first estimate corrections to $\nu_{s}\left(\mathrm{CH}_{3}\right)$ for Fermi resonances involving $2 \delta_{\text {as }}\left(\mathrm{CH}_{3}\right)$ and $2 \delta_{\mathrm{s}}\left(\mathrm{CH}_{3}\right)$. These we make by borrowing W values of $34 \mathrm{~cm}^{-1}$ from $\mathrm{CH}_{3} \mathrm{Cl}^{29}$ and of $40 \mathrm{~cm}^{-1}$ from $\mathrm{CH}_{3} \mathrm{~F}^{30}$ for the two resonances, respectively. The displacements to $\nu_{s}\left(\mathrm{CH}_{3}\right)$ from $2 \delta_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$ alone are then calculated to be $16.4(\mathrm{Mn})$ and $24.8 \mathrm{~cm}^{-1}(\mathrm{Re})$, respectively. The higher value for the Re compound is in keeping with the altered intensity ratio and frequency separation observed for it.

Bands due to $2 \delta_{s}\left(\mathrm{CH}_{3}\right)$ were not identified, but they may be expected near $2370 \mathrm{~cm}^{-1}$ in both cases. The further shift on $\nu_{s}\left(\mathrm{CH}_{3}\right)$ due to $2 \delta_{s}\left(\mathrm{CH}_{3}\right)$ is then estimated to be about $3 \mathrm{~cm}^{-1}$. We therefore predict $\nu_{\mathrm{s}}{ }^{\circ}\left(\mathrm{CH}_{3}\right)$ at $2898(\mathrm{Mn})$ and $2879 \mathrm{~cm}^{-1}(\mathrm{Re})$, respectively.

In calculating the frequency sum for the CH_{3} group, we take the highest and lowest frequencies of the band due to $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$, in each case, plus $\nu_{s}{ }^{\circ}\left(\mathrm{CH}_{3}\right)$ and divide by three to obtain the "average" CH stretching frequencies of $2953(\mathrm{Mn})$ and $2936 \mathrm{~cm}^{-1}$ (Re). These averages are remarkably close to the centers of the observed parallel-type bands at $2955.0(\mathrm{Mn})$ and $2934.6 \mathrm{~cm}^{-1}$ (Re), in the CHD_{2} compounds, which constitutes strong prima facie evidence for the assignment of the latter as average fre-

[^5]quencies. The same interpretation then follows for the band at $2184.5 \mathrm{~cm}^{-1}$ in the $\mathrm{CH}_{2} \mathrm{DMn}(\mathrm{CO})_{5}$ spectrum, whose frequency relative to the $\mathrm{CHD}_{2} \mathrm{Mn}$ band yields an acceptable anharmonicity factor of 1.007. ${ }^{31}$
Two possibilies then arise for these "average frequency" bands. The first is that they represent a CH bond whose force constant is constant and independent of internal rotation angles. Any torsional barrier must then arise from the conventional origin with the first term expected to be a V_{12} one. If this term were negligible then the $\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)$ band should have the appearance of a normal perpendicular band with K spacing characteristic of the freely rotating CH_{3} group with an A value of about $5 \mathrm{~cm}^{-1}$. Moreover the CHD_{2} band would be hybrid in character, and its perpendicular component would be similar to the $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$ one, but with K spacing reflecting the smaller A value of about $3.2 \mathrm{~cm}^{-1}$ for the CHD_{2} group, exactly as seen in the infrared spectrum of (CHD) ${ }_{2} \mathrm{Zn}$ in Figure $1 .{ }^{20}$ Clearly neither of these bands has the expected appearance. However, the wings on the CHD_{2} band have so wide a spacing that it is difficult to resist the conclusion that they derive from an internally rotating CHD_{2} group. That these wings are present as maxima then implies that a barrier exists to internal rotation.
With use of the same argument as was employed in the case of carbon monoxide in a quinol clathrate, ${ }^{32}$ the height of the barrier is approximately the rotational energy at the wing maximum, which is $59 \mathrm{~cm}^{-1}$ for a K value of 4.3. Preliminary calculations suggest that this barrier is more likely to be of V_{4} than of V_{12} origin, since the lowest energy levels and wave functions for a V_{12} potential are much more rotational in character than those of a V_{4} one, whose lowest levels are distinctly torsional in nature. The V_{4} potential according to the earlier discussion would derive from a varying CH force constant, whose average value gives rise to the parallel CHD_{2} band.

The appearance of the $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$ band appears to discriminate sharply between the two possible origins of the torsional barrier. A V_{12} potential introduces holes centered on transitions to $K=$ 6 levels, on each side of a strong central maximum. The absence of the latter in the $\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{s}$ spectrum, with instead a widely spaced doublet, can only be interpreted in terms of a splitting of the $\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)$ degeneracy, with consequences as in the SW model, and such a splitting, we believe, invariably stems from a CH force constant variation.

[^6]Table IV. 3×3 Refinements of Average Frequencies of $\mathrm{MeM}(\mathrm{CO})_{5}$ Species

	$\mathrm{M}=\mathrm{Mn}$		$\mathrm{M}=\mathrm{Re}$	
Frequencies Assumed				
$\nu\left(\mathrm{CHD}_{2}\right)$			2934.6	
	(1)	(2)	(1)	(2)
$\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)$	2980	2975.4	2962.8	2958.1
Frequencies and Constants Calculated ${ }^{\text {a }}$				
f	4.777	4.778	4.708	4.712
$f^{\prime \prime}$	0.026	0.042	0.007	0.025
$\nu_{s}\left(\mathrm{CH}_{3}\right){ }^{\text {a }}$	2897.0	2907.0	2868.7	2880.5
$\nu \mathrm{as}\left(\mathrm{CD}_{3}\right)^{b}$	2234.1	2230.8	2220.1	2216.6
$\nu_{\mathrm{s}}\left(\mathrm{CD}_{3}\right)^{b}$	2103.7	2110.9	2085.7	2094.2
$\nu_{2}\left(\mathrm{CHD}_{2}\right)^{b}$	2234.1	2230.8 2149.0	2220.1	2216.6 2132.8
$\nu_{3}\left(\mathrm{CHD}_{2}\right)^{b}$	2144.6	2149.0	2125.9	2132.8
$\nu_{1}\left(\mathrm{CH}_{2} \mathrm{D}\right)$	2980.0	2975.5	2962.8	2958.1
$\nu_{2}\left(\mathrm{CH}_{2} \mathrm{D}\right){ }^{\text {b }}$	2927.6	2932.0	2903.6	2908.9
$\nu_{3}\left(\mathrm{CH}_{2} \mathrm{D}\right)^{b}$	2187.9	2188.8	2171.9	2173.4

${ }^{a}$ HCH angles as in Table VI. ${ }^{b}$ Computed frequencies $\times 1.011$ to alleviate $\mathrm{CH} / \mathrm{CD}$ anharmonicity differences.

There are, however, weak central maxima on the $\nu_{\mathrm{as}}\left(\mathrm{CD}_{3}\right)(\mathrm{Mn})$ and $\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)(\mathrm{Re})$ bands, and possibly also in the $\nu_{\text {as }}\left(\mathrm{CD}_{3}\right)(\mathrm{Re})$ one. These could indicate the existence of a small V_{12} barrier. By analogy with toluene and nitromethane, this is unlikely to exceed $\sim 5 \mathrm{~cm}^{-1}$. The ground ($K=0$) state lies below the barrier in all cases, and for a CD_{3} group the $K=1$ state lies at or below the barrier for a height $>5 \mathrm{~cm}^{-1}$ (Figure 4). The possibility of intensity derived from $\Delta K=0$ transitions then arises. There is, however, an alternative source of intensity near the center of a $\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)$ band. There is no reason why the dipole derivative of a CH bond should be invariant during internal rotation, and one can imagine an overall dipole derivative for the whole group developing a component parallel to the top axis, which would lead to $\Delta K=0$ transitions. Either mechanism might be expected to be more prominent in the Re compound where the carbon-metal bond is significantly stronger than that in the Mn compound, leading to greater interaction between the methyl group as a whole and the metal d orbitals.

The conclusion that a variation in $\nu(\mathrm{CH})$ with rotation angle is responsible for the strange appearance of both CHD_{2} and CH_{3} spectra also enables us to understand the spectra in condensed phases. The great breadth of both $\nu\left(\mathrm{CHD}_{2}\right)$ and $\nu_{s}\left(\mathrm{CH}_{3}\right)$ bands in the solid and the relatively low sensitivity of the latter both in solid and in solution to temperature variation is readily explained if the breadth is due largely to force constant variation and not to free internal rotation. It then becomes unnecessary to assume the unrealistically high barrier of $\sim 944 \mathrm{~cm}^{-1}$ deduced by Dempster et al. ${ }^{24}$

It will be apparent that it would be very hard to reconcile our picture of a low ($<10 \mathrm{~cm}^{-1}$) V_{12} barrier in the ground state of a CH_{3} group with the supposed torsional frequency of $174 \mathrm{~cm}^{-1}$ in the crystal phase. ${ }^{4}$ We observe first that the harmonic oscillator approximation

$$
V_{n}=\nu_{t}^{2} / n^{2} B
$$

is valueless for situations where B and n are large, although for a smaller value of n such as 3 it gives a barrier of $\sim 635 \mathrm{~cm}^{-1}$, not far below the one estimated by Cavagnat of $\sim 710 \mathrm{~cm}^{-1}$. 27 For $n=6$, the first excited torsional state, which derives from the levels $K=3,4,5$, and 6 , is still split by about $61 \mathrm{~cm}^{-1}$ when $V_{6}=400$ cm^{-1}, and no well-defined torsional frequency could be expected. ${ }^{27}$ For $n=12$, an enormous barrier would be needed before welldefined torsional levels would appear, deriving as they do each from seven K levels. It is difficult to resist the conclusion that torsional-rotational transitions in the crystal must be spread over a wide region of the spectrum and thus remain undetected.

It remains to attempt a semiquantitative interpretation of the CH_{3} and CHD_{2} frequencies, which may also help us to understand the $\mathrm{CH}_{2} \mathrm{D}$ spectrum.
3×3 Refinement Calculations. We first attempt to fit average CHD_{2} and CH_{3} frequencies, derived from transitions well above

Table V. Methyl Group $\nu_{\text {as }}$ and $\nu\left(\mathrm{CHD}_{2}\right)$ Splittings $\left(\mathrm{cm}^{-1}\right)^{a}$
$\Delta \nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right) \quad \Delta \nu_{\mathrm{as}}\left(\mathrm{CD}_{3}\right) \quad \Delta \nu\left(\mathrm{CHD}_{2}\right)$

High-Barrier Cases (C_{s} Local Symmetry)			
$\mathrm{CH}_{3} \mathrm{COCH}_{3}{ }^{\text {b }}$	51	42	58
$\mathrm{CH}_{3} \mathrm{CHO}^{\text {b }}$	48	38	57
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}{ }^{\text {b }}$	22	21	28
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}{ }^{\text {b }}$	35	32	41
$\mathrm{CH}_{3} \mathrm{CFO}^{\text {c }}$	40		45.3
$\mathrm{CH}_{3} \mathrm{CClO}^{\text {c }}$	26.4		25.5
$\mathrm{CH}_{3} \mathrm{CCNO}^{\text {c }}$	49.3		52.5
Low-Barrier Cases			
$\mathrm{CH}_{3} \mathrm{NO}_{2}{ }^{\text {d }}$ gas	36 ?	32	42
$\mathrm{CH}_{3} \mathrm{NO}_{2}{ }^{\text {d }}$ cryst	34	34	48
$\mathrm{CH}_{3} \mathrm{BF}_{2}{ }^{\text {e }}$	55 ?	38	60
$\mathrm{CH}_{3} \mathrm{BCl}_{2}{ }^{\text {e }}$	64.5	56	73
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~B}^{\text {e }}$	66	54	71
$\left(\mathrm{CH}_{3} \mathrm{BO}\right)_{3}{ }^{\text {e }}$	68	42	60
$\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{5}$	60	43.3	55
$\mathrm{CH}_{3} \mathrm{Re}(\mathrm{CO}){ }_{5}{ }^{\text {d }}$	67.5	47.5	57

${ }^{9}$ Gas phase except where otherwise indicated. ${ }^{b}$ Reference 14. ${ }^{c}$ Reference 33. ${ }^{d}$ Reference 10 and 11 . ${ }^{e}$ Reference 12. ${ }^{f}$ This work.
the barrier, with two parameters, one diagonal stretching and one off-diagonal stretch-stretch interaction constant. For the latter, if we take the average of the two extreme $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$ frequencies to represent $\nu_{\mathrm{as}}^{\mathrm{av}}\left(\mathrm{CH}_{3}\right)$, we obtain the results under (1) of Table IV. For the Mn compound, the value of f^{\prime} of 0.026 is close to those normally found ($0.03-0.04$) in non-rotating CH_{3} groups. ${ }^{33}$ The values of $\nu_{\mathrm{s}}\left(\mathrm{CH}_{3}\right)$ and $\nu_{\mathrm{as}}{ }^{\text {av }}\left(\mathrm{CD}_{3}\right)$ are very close to those estimated or observed (2898 and $2235 \mathrm{~cm}^{-1}$, respectively). In the case of the Re compound, however, the value of f^{\prime} of 0.007 is anomalously low, and the prediction of $\nu_{\mathrm{s}}{ }^{0}\left(\mathrm{CH}_{3}\right)$ and $\nu_{\mathrm{as}}\left(\mathrm{CD}_{3}\right)$ distinctly poorer (these should be 2879 and $2217 \mathrm{~cm}^{-1}$, respectively). A possible factor contributing to the latter might be that the midpoint of the $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$ doublets should be equated to $\nu_{\mathrm{vib}}{ }^{0}$ $+A(1-2 \zeta)$, rather than $\nu_{\text {vib }}{ }^{0}$. When a ζ value of 0.065 from $\mathrm{CH}_{3} \mathrm{Cl}$ is borrowed, $\nu_{\mathrm{as}}{ }^{0}\left(\mathrm{CH}_{3}\right)$ is found to be $2975.4(\mathrm{Mn})$ and $2958.1(\mathrm{Re}) \mathrm{cm}^{-1}$, respectively. These then give the calculated quantities listed under (2) in Table IV. The prediction of $\nu_{\mathrm{s}}^{0}\left(\mathrm{CH}_{3}\right)$ and $\nu_{\mathrm{as}}^{\text {av }}\left(\mathrm{CD}_{3}\right)$ for the Re compound then becomes very good, with f^{\prime} satisfactory, whereas the agreement for the Mn compound is poorer than before. While part of the discrepancies involved may arise from errors in the Fermi resonance corrections on $\nu_{s}\left(\mathrm{CH}_{3}\right)$, there does appear to be a real difference in the value of f^{\prime} for the Mn and Re compounds.

The calculations also give some guidance as to the assignment of other bands in the spectra. Thus the prediction of $\nu_{\mathrm{s}}{ }^{0}\left(\mathrm{CD}_{3}\right)(\mathrm{Mn})$ in the range $2104-2111 \mathrm{~cm}^{-1}$ means that the band observed at $2071 \mathrm{~cm}^{-1}$ with pronounced ${ }^{13} \mathrm{C}$ shift must be at best a Fermi resonating component, the other component underlying the A_{1} $\nu(\mathrm{CO})$ band near $2120 \mathrm{~cm}^{-1}$. The strong band with PQR-type contour at $2147.5 \mathrm{~cm}^{-1}$ in the $\mathrm{CHD}_{2} \mathrm{Mn}$ compound is, however, at an appropriate frequency for ν_{3} of the CHD_{2} group, although its coincidence with a $\nu(\mathrm{CO})$ combination band in the $\mathrm{CH}_{3} \mathrm{Mn}$ spectrum may indicate another origin, as discussed earlier. ν_{2} for the $\mathrm{CHD}_{2} \mathrm{Mn}$ group, predicted in the range $2231-2234 \mathrm{~cm}^{-1}$, lies slightly above the mean of the observed CHD_{2} doublet (~ 2228 cm^{-1}) although the lower component of the doublet is very poorly defined due to overlap with another $\nu(\mathrm{CO})$ combination. ν_{1} for the $\mathrm{CH}_{2} \mathrm{D}$ group is calculated in the range $2975-2980 \mathrm{~cm}^{-1}$ which encompasses that of a broad observed maximum at $2977 \mathrm{~cm}^{-1}$, while ν_{2} for the same group, calculated in the range 2928-2932 cm^{-1}, can just be reconciled with the observed band at $2940.6 \mathrm{~cm}^{-1}$ if a Fermi resonance correction of the order of $10 \mathrm{~cm}^{-1}$ be applied to the latter. ${ }^{34}$

A final comment on this aspect of the calculations is that the central maximum observed at $2967 \mathrm{~cm}^{-1}$ in the $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3} \mathrm{Re}\right)$ band

[^7]Table VI. Predictions of Methyl Group Geometries and Other Parameters for $\mathrm{MeM}(\mathrm{CO})_{s}$

$\mathrm{M}=$	$r_{0}(\mathrm{CH}),{ }^{4} \AA$	$\angle \mathrm{HCH},{ }^{\text {b }}$ deg	$A_{0},{ }^{c} \mathrm{~cm}^{-1}$				$\begin{gathered} D^{\circ}{ }_{298}(\mathrm{CH}){ }^{d}{ }^{d \mathrm{kcal} \mathrm{~mol}^{-1}} \end{gathered}$
			CH_{3}	$\mathrm{CH}_{2} \mathrm{D}$	CHD_{2}	CD_{3}	
Mn	1.095,	$108.0{ }_{3}$	5.320	3.997	3.203	2.672	100.0
Re	$1.098{ }_{0}$	107.0,	5.363	4.031	3.229	2.693	98.3

${ }^{a}$ From $r_{0}(\mathrm{CH})=1.3982-0.0001023 \nu^{\text {is }}(\mathrm{CH}) .{ }^{9}{ }^{b}$ From $\angle \mathrm{HCH}=0.04709 \nu^{\text {is }}(\mathrm{CH})-31.12 .{ }^{9}{ }^{c}$ Assuming $\delta r_{0}(\mathrm{CH}-\mathrm{CD})=0.002 \AA .{ }^{d}$ From $D^{\circ}{ }_{298}{ }^{-}$ $(\mathrm{CH})=0.08616 \nu^{2}(\mathrm{CH})-154.6 .{ }^{9}$
is significantly higher than the higher of the two average values chosen in Table IV and cannot easily be reconciled with $\nu_{\mathrm{as}}{ }^{\text {av }}\left(\mathrm{CH}_{3}\right)$, particularly if the $A(1-2 \zeta)$ connection is applied to the latter without a smaller value of f^{\prime}.
While these results must be considered not unsatisfactory, immediate difficulties arise if one attempts to reconcile the $\nu_{\mathrm{as}}{ }^{-}$ $\left(\mathrm{CH}_{3}\right)$ and $\nu\left(\mathrm{CHD}_{2}\right)$ splittings on a purely vibrational basis. Table V shows the variety of $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right), \nu_{\mathrm{as}}\left(\mathrm{CD}_{3}\right)$, and $\nu\left(\mathrm{CHD}_{2}\right)$ splittings found previously for molecules with free internal rotation and without it, the latter being chosen from cases where the methyl group retains a local plane of symmetry. It is apparently normal for the CHD_{2} splitting to be greater than the CH_{3} one, exceptions being the cases of $(\mathrm{MeBO})_{3}$ and $\mathrm{CH}_{3} \mathrm{COCl}$.
The data for $\Delta \nu\left(\mathrm{CHD}_{2}\right)$ for the current Mn and Re compounds are based on the observed wing maxima, which must surely represent the maximum variation in $\nu(\mathrm{CH})$ possible. It is seen that the pentacarbonyl splittings parallel those for $(\mathrm{MeBO})_{3}$, with $\Delta \nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$ appreciably larger than $\Delta \nu\left(\mathrm{CHD}_{2}\right)$, and a big difference between $\Delta \nu_{a s}\left(\mathrm{CH}_{3}\right)$ and $\Delta \nu_{a s}\left(\mathrm{CD}_{3}\right)$. It follows that on a vibrational basis they could only be explained by a large and implausible variation with angle of the interaction constant, as for (MeBO$)_{3} .{ }^{12}$ What happens to the vibration frequencies for a constant interaction force constant is illustrated in Table I and Figure 3 where the three frequencies for each of the $\mathrm{CH}_{3}, \mathrm{CD}_{3}, \mathrm{CH}_{2} \mathrm{D}$, and CHD_{2} groups are shown as a function of angle ϕ, over half a cycle in ϕ, on the assumption that each individual stretching force constant varies according to

$$
f_{i}=f_{0}+f_{4} \cos 4(\phi+\delta)+f_{8} \cos 8(\phi+\delta)
$$

where $\delta=0,120$, and 240° for the three H atoms, respectively. The values of f_{0} and f_{4} were chosen so as to yield $\nu_{1}\left(\mathrm{CHD}_{2}\right)$ frequencies agreeing closely with the wing maxima and central band frequencies of that group. Calculations were made for two cases: (1) for $f_{8}=0$ and (2) for a value of $f_{8}=0.3 f_{4}$, analogous to the $f_{4}=0.3 f_{2}$ relationship found in nitromethane. ${ }^{11}$ In case 1, the $54-\mathrm{cm}^{-1}$ variation in $\nu_{1}\left(\mathrm{CHD}_{2}\right)$ is accompanied by a $\nu_{\mathrm{ss}}\left(\mathrm{CH}_{3}\right)$ ($\nu_{1}-\nu_{2}$) splitting varying from 30.9 to $22.6 \mathrm{~cm}^{-1}$, with an average value of $26.8 \mathrm{~cm}^{-1}$. The $\nu_{\mathrm{as}}\left(\mathrm{CD}_{3}\right)$ splitting similarly varies from 21.8 to $19.0 \mathrm{~cm}^{-1}$ with an average value of $20.4 \mathrm{~cm}^{-1}$. These calculated splittings are therefore less than half of the observed ones. In case 2 the variations with ϕ in both ν_{1} and ν_{2} are somewhat greater than the above.

The situation in fact may be rather worse than this. The CHD_{2} wings on our interpretation are due to barriers in the upper $\nu(\mathrm{CH})$ vibrational state, where the energy is $3 / 2\left(\nu_{\text {vib }} \pm 1 / 2 \Delta \nu\right)$. A barrier of about $60 \mathrm{~cm}^{-1}$ here therefore implies a $\Delta \nu(\mathrm{CH})$ of about 40 cm^{-1}, not $54 \mathrm{~cm}^{-1}$ as in the above simple calculation.

Another feature of the calculations is a pronounced, non-sinusoidal variation in both ν_{1} and ν_{2} of the $\mathrm{CH}_{2} \mathrm{D}$ group (and similarly for ν_{2} and ν_{3} of CHD_{2}). This gives rise to what is basically a V_{4} barrier of about $7 \mathrm{~cm}^{-1}$ in the ground vibrational state (see G_{000} in Table I) but about 35 or $44 \mathrm{~cm}^{-1}$ in the 100 state depending on whether an f_{8} contribution is included or not. This then leads to a possible interpretation of the $\nu(\mathrm{CH})$ region of the $\mathrm{CH}_{2} \mathrm{D}$ group in the Mn compound. The band at $2977 \mathrm{~cm}^{-1}$ could arise from a parallel component of the dipole derivative associated with ν_{1}, or to transitions between states essentially torsional in character, also associated with ν_{1}, while the maximum at 3006 cm^{-1} could be a wing of the perpendicular type band associated with ν_{1}, whose inner parts are missing, as in the $\nu(\mathrm{CH})$ band of the CHD_{2} group. The other wing would be concealed by the $2940.6-\mathrm{cm}^{-1}$ band whose incipient PQR contour identifies it as the parallel band arising from the essentially symmetric stretching
mode ν_{2}, itself an "average" frequency, like the $\nu(\mathrm{CH}) \mathrm{CHD}_{2}$ parallel band. The difficulty with this interpretation is that the wing spacing would then be about $58 \mathrm{~cm}^{-1}[=2(3006-2977)]$ which is larger than that observed for the CHD_{2} group ($55 \mathrm{~cm}^{-1}$), whereas the model predicts a significantly smaller barrier. There has of course been no attempt here to consider the possibility of perturbations between K levels of the ν_{1} and ν_{2} vibrations of the $\mathrm{CH}_{2} \mathrm{D}$ group which might be analogous to those which lead to the observed wings in $\nu_{\text {as }}\left(\mathrm{CH}_{3}\right)$ in the CH_{3} group.
Perhaps the strongest evidence for a combination of variation of $\nu^{\text {is }}(\mathrm{CH})$ with orientation, together with free internal rotation of the methyl group, in these molecules, is just the difficulty experienced here in applying the " 3×3 " refinement which accounts so well for the CH_{3} and CD_{3} spectra of non-rotating methyl groups.

It remains to list the main features that a comprehensive treatment of the energy levels and transitions of these systems should embody, even within the confines of an energy-factored force field. Variations with internal rotation angle must be considered in (1) the individual CH stretching force constants, (2) the stretch-stretch interaction force constants, (3) the direction and magnitude of the dipole derivatives, and (4) the CH bond lengths and HCH angles. These variations should include the possibility of both V_{4} and V_{8} terms. For the pentacarbonyl molecules, and for the earlier $\mathrm{CH}_{3} \mathrm{XY}_{2}$ ones, the calculations will need to include the overall rotation of the molecule as well as the internal rotation, in order to predict the observed spectra satisfactorily.
Geometry of the Methyl Group and Chemical Significance. The average frequencies of the CHD_{2} groups, in conjunction with established correlations between $\nu^{\text {is }}(\mathrm{CH})$ and $r_{0}(\mathrm{CH}), \alpha \mathrm{HCH}$, and $D_{0}{ }^{298}(\mathrm{C}-\mathrm{H}),{ }^{9 \mathrm{am}}$ yield the values listed in Table VI.
The first point to make is that these CH bonds are of normal strength and length. ${ }^{35}$ That in $\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{5}\left(2955 \mathrm{~cm}^{-1}\right)$ is comparable with that in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Hg}\left(2953.8 \mathrm{~cm}^{-1}\right)^{20}$ or $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Ge}$ $\left(2954 \mathrm{~cm}^{-1}\right)^{36}$ and slightly stronger than that in ethane (2950 $\left.\mathrm{cm}^{-1}\right)^{92}$. The CH bond in $\mathrm{CH}_{3} \mathrm{Re}(\mathrm{CO})_{5}\left(2934.6 \mathrm{~cm}^{-1}\right)$ is similar to those in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Zn}\left(2935.0 \mathrm{~cm}^{-1}\right)^{20}$ and neopentane (2934 $\left.\mathrm{cm}^{-1}\right)^{9 \mathrm{a}}$ and marginally weaker than that in $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}(2939$ $\left.\mathrm{cm}^{-1}\right)^{36}$.

Secondly, the range of frequency from Mn to $\operatorname{Re}\left(20 \mathrm{~cm}^{-1}\right)$ is similar but in the opposite direction to that from $\mathrm{Me}_{2} \mathrm{Zn}$ to $\mathrm{Me}_{2} \mathrm{Hg}$ or $\mathrm{Me}_{4} \mathrm{Si}$ to $\mathrm{Me}_{4} \mathrm{Sn}\left(2960 \mathrm{~cm}^{-1}\right) .{ }^{35}$ In all three groups, however, $\nu^{\text {is }}(\mathrm{CH})$ exhibits an inverse relationship to $\left.\bar{D}_{0}\left(\mathrm{M}-\mathrm{CH}_{3}\right)\right)^{20}$ Thus $D_{0}\left(\mathrm{Re}^{-} \mathrm{CH}_{3}\right)-D_{0}\left(\mathrm{Mn}-\mathrm{CH}_{3}\right)=25.3$ or $22.3 \mathrm{kcal} \mathrm{mol}{ }^{-1} .{ }^{37}$ The possibilities for predicting $D_{0}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ values from $\nu^{\text {is }}(\mathrm{CH})$ are thereby increased. More usefully, perhaps, data for groups 2B, 4 A , and 7B indicate that differences of $1 \mathrm{~cm}^{-1}$ in $\nu^{\text {is }}(\mathrm{CH})$ in structurally related molecules imply differences of the order of $0.7-1.3 \mathrm{kcal} \mathrm{mol}^{-1}$ in $D_{0}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$.
(35) The conclusion of Andrews et al. ${ }^{4}$ that these bonds are anomalously weak apparently rests on the extrapolation to MeM compounds of a correlation between $\nu(\mathrm{CH})$ values in $\mathrm{CH}_{3} \mathrm{X}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ and $\nu(\mathrm{HX})$ ones, In view of the numerous specific effects not associated with electronegativity which $\nu^{\text {is }}(\mathrm{CH})$ values exhibit (including one in $\mathrm{CH}_{3} \mathrm{~F}$), we feel that this approach is unfruitful. Speculation about the specific effects of metal d orbitals on antisymmetric and symmetric CH_{3} stretching frequencies is also likely to be unhelpful. The primary concern must be to identify effects on the individual CH stretching force constant. This achieved, examination of stretch-stretch interaction constants, which determine the $\nu_{\mathrm{as}} / \nu_{\mathrm{s}}$ separation, might follow.
(36) Burger, H.; Biedermann, S. Spectrochim. Acta, Part A 1972, 28A, 2283.
(37) Lalage, D.; Brown, S.; Connor, J. A.; Skinner, H. A. J. Organomet. Chem. 1974, 81, 403.

Thirdly, we predict a variation in $r_{0}(\mathrm{CH})$ with internal rotation angle of the order of $0.004-0.006 \AA$, in both compounds. While the absence of a fully quantitative treatment of the potential function precludes an exact prediction, the general resemblance of the $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$ and $\nu\left(\mathrm{CHD}_{2}\right)$ splittings to those in $(\mathrm{MeBO})_{3}$, where a variation of the above order is confirmed by ab initio calculations, ${ }^{38}$ provides additional support for the proposed bond length fluctuation in the $\mathrm{MeMn}(\mathrm{CO})_{5}$ and $\mathrm{MeRe}(\mathrm{CO})_{5}$ compounds.

Conclusions

1. The infrared spectra of $\mathrm{MeMn}(\mathrm{CO})_{s}$ and $\mathrm{MeRe}(\mathrm{CO})_{s}$ species in the CH and CD stretching regions can be qualitatively interpreted in terms of a CH stretching force constant which varies with internal rotation angle of an essentially freely rotating methyl group.
(38) Although described earlier as $4-31 \mathrm{G}$ calculations, ${ }^{12}$ these were in fact STO-3G ones, scaled up according to STO-3G/4-31G differences in MeNO_{2} and MeBF_{2} (P. D. Mallinson, private communication).
2. The ground-state barrier to internal rotation is probably of V_{12} origin and very low, $<10 \mathrm{~cm}^{-1}$.
3. Mean CH bond lengths of 1.095 , and 1.098_{0} are predicted for the Mn and Re compounds, respectively, with variations of the order of $0.004-0.006 \AA$ during internal rotation.
4. The CH bonds are of average strength, that in the Re compound being slightly the weaker, and bear an inverse relationship to $D_{0}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$, as in other MeM compounds.
5. Further development of theory is needed for a quantitative interpretion of the spectra, especially the $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$ and $\nu_{\mathrm{as}}\left(\mathrm{CD}_{3}\right)$ splittings.

Acknowledgment. We are much indebted to Dr. D. Cavagnat for detailed calculations of CH_{3} and CD_{3} internal rotation/torsion energy levels. We thank the S.E.R.C. for supporting this work.

Registry No. $\mathrm{Zn}\left(\mathrm{CHD}_{2}\right)_{2}$, 92525-33-2; $\mathrm{CH}_{3} \mathrm{Re}(\mathrm{CO})_{5}, 14524-92-6$; $\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{5}, 13601-24-6 ; \mathrm{CHD}_{2} \operatorname{Re}(\mathrm{CO})_{5}, 92525-30-9 ; \mathrm{CHD}_{2} \mathrm{Mn}(\mathrm{C}-$ O) $5,92525-31-0 ; \mathrm{CH}_{2} \mathrm{DMn}(\mathrm{CO})_{5}, 20792-56-7 ; \mathrm{CD}_{3} \mathrm{Mn}(\mathrm{CO})_{5}$, 15653-52-8; $\mathrm{CD}_{3} \operatorname{Re}(\mathrm{CO})_{5}, 92525-32-1$.

Molecular Structure of s-cis- and s-trans-Acrolein Determined by Microwave Spectroscopy

C. E. Blom, ${ }^{\dagger}$ G. Grassi, and A. Bauder*
Contribution from the Laboratorium für Physikalische Chemie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland. Received December 21, 1983

Abstract

The rotational spectra of highly enriched single D -, ${ }^{13} \mathrm{C}$-, and ${ }^{18} \mathrm{O}$-substituted species of acrolein have been measured and analyzed over $12-58 \mathrm{GHz}$. The complete substitution structure has been determined for the less abundant s-cis conformer from the ground-state rotational constants. In addition newly assigned μ_{b}-type transitions for all isotopic species of the more abundant s-trans-acrolein have improved the structure of this conformer. Careful measurements of the Stark effect have resulted in an accurate determination of the electric dipole moment of the s-trans conformer. A comparison of the molecular structures of the two conformers has revealed significant differences in the central $\mathrm{C}-\mathrm{C}$ bonds.

Among the simplest 1,3 -conjugated double-bond systems butadiene $\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}\right)$, acrolein $\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\right.$ O), and glyoxal ($\mathrm{O}=\mathrm{CH}-\mathrm{CH}=\mathrm{O}$) only acrolein possesses a non-vanishing electric dipole moment in the most abundant s-trans conformer. ${ }^{1}$ Acrolein represents a crucial system for studying the effect of the change of conformation on the structure in a 1,3 -conjugated double-bond system by the microwave method. Several investigations of the rotational spectra of s-trans-acrolein have been reported. ${ }^{2-5}$ They include the assignment of μ_{a}-type transitions of isotopically substituted species measured in natural abundance except for the deuterated species. ${ }^{3}$ Their analysis allowed the determination of a substitution structure of the planar s -trans conformer. Only recently the rotational spectrum of the less abundant s-cis-acrolein has been assigned. ${ }^{6}$ Its analysis established that this conformer is likewise a planar molecule.

The present contribution continues our earlier work on s-cisacrolein, ${ }^{6}$ providing now the complete substitution structure of this conformer. Highly enriched isotopically substituted species of acrolein had to be prepared since the intensities of the rotational transitions of the s-cis conformer were only 2% of those of the s -trans conformer. In the course of this study it became clear that more accurate data for the isotopic species of s-trans-acrolein were needed in order to make a comparison of the structural parameters of s -cis and s -trans conformers possible. Therefore we have remeasured the rotational spectra of D -, ${ }^{13} \mathrm{C}$-, and ${ }^{18} \mathrm{O}$-substituted

[^8]species of s-trans-acrolein and have also assigned μ_{b}-type transitions. With the help of the newly measured transition frequencies three rotational and five quartic centrifugal distortion constants could be determined for all isotopic species, improving the previous analysis. ${ }^{3}$ In addition accurate measurements of the Stark splittings of optimally selected transitions have allowed a better determination of the electric dipole moment, especially of the μ_{b} component.

Experimental Details

Chemicals. Five isotopic species of acrolein were prepared by an aldol condensation from appropriate isotopic species of formaldehyde and acetaldehyde. ${ }^{7}$ The reactions were carried out in the gas phase at $280^{\circ} \mathrm{C}$ in a reactor filled with an alkaline catalyst following the modifications by Renaud and Stephens. ${ }^{8}$ The catalyst was composed of silica gel 40 ($70-230$ mesh, Fluka AG) treated with a 10% sodium carbonate solution.? The crude products from the aldol condensation were purified by gas chromatography (Perkin-Elmer F-21, 4.5 -m packed column with 15% QF-1 on Chromosorb W, $40^{\circ} \mathrm{C}$).
(1) s-trans refers to the trans orientation of the conjugated double bonds about the $\mathrm{C}-\mathrm{C}$ single bond, s -cis to the cis orientation.
(2) Wagner, R.; Fine, J.; Simmons, J. W.; Goldstein, J. H. J. Chem. Phys. 1957, 26, 634.
(3) Cherniak, E. A.; Costain, C. C. J. Chem. Phys. 1966, 45, 104.
(4) Benson, R. C.; Flygare, W. H. J. Chem. Phys. 1973, 58, 2366.
(5) Winnewisser, M.; Winnewisser, G.; Honda, T.; Hirota, E. Z. Naturforsch. A 1975, 30A, 1001.
(6) Blom, C. E.; Bauder, A. Chem. Phys. Lett. 1982, 88, 55.
(7) Schulz, H.; Wagner, H. Angew. Chem. 1950, 62, 105.
(8) Renaud, R. N.; Stephens, J. C. J. Labelled Compd. 1972, 8, 509.

[^0]: (1) (a) Present address: National Institute for Higher Education, Dublin 9, Ireland. (b) Present address: Robert Gorden's Institute of Technology, St. Andrew St., Aberdeen, Scotland.
 (2) Seip, H. M.; Seip, R. Acta Chem. Scand. 1970, 24, 3431.
 (3) Rankin, D. W. H.; Robertson, A. J. Organomet. Chem. 1976, 105, 331.
 (4) Andrews, M. A.; Eckart, J.; Goldstone, J. A.; Passell, L.; Swanson, B. J. Am. Chem. Soc. 1983, 105, 2262.
 (5) McHugh, T. M.; Rest, A. J. J. Chem. Soc., Dalton Trans. 1980, 2323.
 (6) Dempster, A. B.; Powell, D. B.; Sheppard, N. J. Chem. Soc. A 1970, 1129.
 (7) Hieber, W.; Braun, G.; Beck, W. Chem. Ber. 1960, 93, 901.
 (8) For a more complete set of references to vibrational spectra of the Mn compound, see ref 4. Reference 7 is the only source known to us of data for the $v(\mathrm{CH})$ region of $\mathrm{CH}_{3} \operatorname{Re}(\mathrm{CO})_{5}$.
 (9) McKean, D. C. Chem. Soc. Rev. 1978, 7, 399. (b) McKean, D. C. J. Mol. Struct. 1984, 113, 251.

[^1]: (10) McKean, D. C.; Watt, R. A. J. Mol. Spectrosc. 1976, 61, 184.
 (11) Cavagnat, D.; Lascombe, J. J. Mol. Spectrosc. 1982, 92, 141.
 (12) McKean, D. C.; Becher, H. J.; Bramsiepe, F. Spectrochim. Acta, Part A 1977, 33A, 951.
 (13) Sheppard, N.; Woodman, C. M. Proc. R. Soc. London, Ser. A 1969, A313, 184.

[^2]: (14) McKean, D. C. Spectrochim. Acta, Part A 1975, 31A, 861.
 (15) Gough, K. M.; Henry, B. R.; J. Phys. Chem., 1984, 88, 1298.
 (16) $\nu^{\text {is }}(\mathrm{CH})$ designates an "isolated" CH stretching frequency, as found here in CHD_{2}-substituted species.
 (17) Lavalley, J. C.; Sheppard, N. Spectrochim. Acta, Part A 1972, 28A, 2091.
 (18) McKean, D. C. Spectrochim. Acta, Part A 1973, 29A, 1559.
 (19) This is another example of an "energy factored" force field more familiar as applied to CO stretches in organometallic compounds.
 (20) McKean, D. C.; McQuillan, G. P.; Thompson, D. W. Spectrochim. Acta, Part A 1980, 36A, 1009 .

[^3]: (21) BMe_{3} appears to be a special case not readily interpretable on any model.
 (22) Since in the model assumed the X_{2} portion is assumed to be infinitely heavy.
 (23) Calculation of the $\nu_{a s}\left(\mathrm{CH}_{3}\right)$ frequencies with both V_{2} and V_{4} terms as found in $\mathrm{CHD}_{2} \mathrm{NO}_{2}$ and $\mathrm{CHD}_{2} \mathrm{Ph}^{11}$ leads to two frequencies which are far from being constant during rotation, the variation in each being about $20 \mathrm{~cm}^{-1}$. This would necessitate a modification of the SW treatment.

[^4]: (25) Long, C.; Morrisson, A. R.; McKean, D. C.; McQuillan, G. P.; Torto, I., to be published.
 (26) A complete cycle in the value of each CH_{3} frequency is of course achieved in 30° of rotation, compared with 60° for $\mathrm{CH}_{3} \mathrm{XY}_{2}$ systems.
 (27) Cavagnat, D., private communication. Calculations for $\mathrm{CH}_{3} \mathrm{XY}_{5}$ using programs described in ref 11.
 (28) Gerhard, S. L.; Dennison, D. M. Phys. Rev. 1933, 43, 197.

[^5]: (29) Bensari-Zizi, N.; Alamichel, C. J. Mol. Spectrosc. 1983, $99,98$.
 (30) Champion, J. P.; Robiette, A. G.; Mills, I. M.; Graner, G. J. Mol. Spectrosc. 1982, 96, 422.

[^6]: (31) This factor equals $\left(G_{\mathrm{CH}} / G_{\mathrm{CD}}\right)^{1 / 2} /(\nu(\mathrm{CH}) / \nu(\mathrm{CD}))$.
 (32) Ball, D. F.; McKean, D. C. Spectrochim. Acta 1962, 18, 933.

[^7]: (33) McKean, D. C.; Torto, I. J. Mol. Struct. 1982, 81, 51.
 (34) $\delta_{s}\left(\mathrm{CH}_{2}\right)$ in $\mathrm{CH}_{2} \mathrm{DMn}(\mathrm{CO})_{5}$ is seen at $1409 \mathrm{~cm}^{-1}$. Allowing $10 \mathrm{~cm}^{-1}$ for a normal anharmonicity deficit, $2 \delta_{s}\left(\mathrm{CH}_{2}\right)$ might be expected at $2808 \mathrm{~cm}^{-1}$, whereas it is observed at $2800 \mathrm{~cm}^{-1}$.

[^8]: ${ }^{\dagger}$ Present address: Physikalisch-Chemisches Institut der Justus-LiebigUniversität Giessen, Heinrich-Buff-Ring 58, D-6300 Giessen, F.R.G.

